Support vector domain description

نویسندگان

  • David M. J. Tax
  • Robert P. W. Duin
چکیده

This paper shows the use of a data domain description method, inspired by the support vector machine by Vapnik, called the support vector domain description (SVDD). This data description can be used for novelty or outlier detection. A spherically shaped decision boundary around a set of objects is constructed by a set of support vectors describing the sphere boundary. It has the possibility of transforming the data to new feature spaces without much extra computational cost. By using the transformed data, this SVDD can obtain more ̄exible and more accurate data descriptions. The error of the ®rst kind, the fraction of the training objects which will be rejected, can be estimated immediately from the description without the use of an independent test set, which makes this method data ecient. The support vector domain description is compared with other outlier detection methods on real data. Ó 1999 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data domain description using support vectors

This paper introduces a new method for data domain description , inspired by the Support Vector Machine by V.Vapnik, called the Support Vector Domain Description SVDD. This method computes a sphere shaped decision boundary with minimal volume around a set of objects. This data description can be used for novelty or outlier detection. It contains support vectors describing the sphere boundary an...

متن کامل

Validating An Online Adaptive System Using Support Vector Machines

In this paper, we propose a novelty detection method based on Support Vector Machines as a candidate approach for validating online adaptive systems. As a oneclass classifier, the support vector data description is able to form a decision boundary around the learned data domain with very little or no knowledge of data points outside the boundary (outliers). Preliminary studies on an actual onli...

متن کامل

Position regularized Support Vector Domain Description

Support Vector Domain Description (SVDD) is an effective method for describing a set of objects. As a basic tool, several application-oriented extensions have been developed, such as support vector clustering (SVC), SVDD-based k-Means (SVDDk-Means) and support vector based algorithm for clustering data streams (SVStream). Despite its significant success, one inherent drawback is that the descri...

متن کامل

The Entire Regularization Path for the Support Vector Domain Description

The support vector domain description is a one-class classification method that estimates the shape and extent of the distribution of a data set. This separates the data into outliers, outside the decision boundary, and inliers on the inside. The method bears close resemblance to the two-class support vector machine classifier. Recently, it was shown that the regularization path of the support ...

متن کامل

Support Vector Domain Description with Maximum Between Spheres Separability

Support Vector Domain Description (SVDD) is inspired by the Support Vector Classifier. It obtains a sphere shaped decision boundary with minimal volume around a dataset. This data description can be used for novelty or outlier detection. Our approach is always to minimize the volume of the sphere describing the dataset, while at the same time maximize the separability between the spheres. To bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1999